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Word distributions

Examining word distributions is the first and most important step in
corpus/text analysis.
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first most frequent word, the second most frequent, and so on).
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Figure 4.3: Per-million-word frequency of words in the Brown Corpus

as a function of their frequency rank (ordered from left to right as the
first most frequent word, the second most frequent, and so on).

Implication: Few words are very frequent; many are rare = long tail.
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Zipf's power law (1932)

- type vs. token
- frequency « 1/rank.

- e.g, Brown corpus: the =~ 6% tokens; of ~ 3%, and ~ 2.6%.



Zipf’'s brevity law

Histogram of Wordlength (Number of Characters)
of Word Types in the Brown Corpus
illustrated with random examples
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Figure 4.4: Histogram of the length (number of characters) of all word
types in the Brown Corpus.
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Zipf’'s brevity law

- More frequent words tend to be shorter (characters/syllables).

- Efficiency pressure: frequent items economize
articulatory/processing effort.

- Most frequent Brown words: monosyllabic, <3 letters (the, of;
and, a, in, to, is, was, I, for).
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As you read more tokens in a corpus, you keep seeing new word
types, but the rate of new words slows down.

Example

- After 1,000 tokens: ~700 unique words
- After 10,000 tokens: not 7000, but maybe ~2,500-3,500

Why it matters?

- Estimate how much data you need before vocabulary “stabilizes”

- Reminds us that growth is sublinear



Topic modeling

- Atopic modeling is a type of statistical modeling for discovering
the abstract topic that occur in a collection of documents.
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- Exploratory: No annotated labels; discover latent structure
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Topic modeling

- Atopic modeling is a type of statistical modeling for discovering
the abstract topic that occur in a collection of documents.

- Exploratory: No annotated labels; discover latent structure
using word frequencies/distributions

- Classic model: LDA (Blei et al., 2003).
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Key idea: (1) Each document is a mixture of topics. (2) Each topic is a
distribution over words. (3) Given only the words, LDA uses Bayesian
inference to approximate the hidden topic structure.

1. Collect documents; tokenize, lemmatize; remove stop words.
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LDA: minimal workflow

Key idea: (1) Each document is a mixture of topics. (2) Each topic is a
distribution over words. (3) Given only the words, LDA uses Bayesian
inference to approximate the hidden topic structure.

1.
2.
3.

Collect documents; tokenize, lemmatize; remove stop words.
Choose K topics; start with random assignments.

Iterate: update topic assignments using document-topic and
topic-word counts.

Inspect top words per topic; give each topic a human-readable
label.

We'll do some hands-on practice with topic modeling.
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- Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers

- Encoding = converting words to vectors
- vector: an ordered list of numbers (e.g., [01, 0.3, -0.5])

1



Word vectors

- If two words often occur near the same neighbors (e.g., dog and
cat near cute), their vectors will be similar.
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Word vectors

- If two words often occur near the same neighbors (e.g., dog and
cat near cute), their vectors will be similar.

- How? Algorithms can automatically learn these vectors from
corpus data

cute

cat 4 dog

election  American
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Core idea:

- Start with a large corpus
- Every word in a fixed vocabulary is represented by a vector

- Go through each position t in the text, which has a center word
and a context word

- Calculate the probability of a center word given a context word
(or vice versa)

- Keep adjusting the word vectors to maximize the probability

- (more on this in the NLP class!)
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Vector arithmetic

- Once the vectors are learned, word vectors can be used for
mathematical operations.

- Word2Vec (Mikolov et al. 2013):
king — man +woman = queen

- We'll also explore Word2Vec.

14



Submission/Grading Guidelines

- Text/Docx file (either . txt or . docx): Submit your output from
the corpus exploration on Tuesday. (If you missed class,
complete it individually and submit.) (10 points)

- Notebook file (. ipynb): Submit your work from today’s session.

- Topic Modeling (5 points)
- + 5 extra points, if you experiment this code on another corpus
- Word2Vec (5 points)

- Optional: Please complete the Collocation Tutorial for extra
credit (+3 points above max)

- Guidelines/Code are on the last week’s section (course website)

- PLEASE run all the codes, so the grader can seamlessly check
your outputs!



	Review
	Word distributions
	Word vectors

